## Exercise 23

In this exercise, we consider how a given point on a vibrating string moves with time. Consider the solution of Exercise 15 with $c=L=1$. Fix $x=x_{0}$ and plot $u\left(x_{0}, t\right)$ as a function of $t$, for $0<t<20$, for $x_{0}=\frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{3}{4}$. Observe that in each case we get a cosine wave and that all the curves are identical except for a scaling factor.

## Solution

The initial boundary value problem from Exercise 15 is

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<L,-\infty<t<\infty \\
& u(x, 0)=\sin \frac{2 \pi x}{L} \\
& \frac{\partial u}{\partial t}(x, 0)=0 \\
& u(0, t)=0 \\
& u(L, t)=0
\end{aligned}
$$

and its solution is

$$
u(x, t)=\sin \frac{2 \pi x}{L} \cos \frac{2 \pi c t}{L} .
$$

Below is a plot of $u$ versus $x$ over $0<x<1$ at several times with $c=1$ and $L=1$.


Below are plots of $u\left(x_{0}, t\right)$ versus $t$ with $c=1$ and $L=1$ for $x_{0}=\frac{1}{4}$,

for $x_{0}=\frac{1}{3}$,

for $x_{0}=\frac{1}{2}$,

and for $x_{0}=\frac{3}{4}$.


